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Introduction to Electromagnetic 
Fields; 

Maxwell’s Equations; Electromagnetic 
Fields in Materials; Electrostatics: 
Coulomb’s Law, Electric Field, 

Discrete and Continuous Charge 
Distributions; Electrostatic Potential 
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 To provide an overview of classical 
electromagnetics, Maxwell’s equations, 
electromagnetic fields in materials, and phasor 
concepts. 

 To begin our study of electrostatics with 
Coulomb’s law; definition of electric field; 
computation of electric field from discrete and 
continuous charge distributions; and scalar 
electric potential. 
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Introduction to Electromagnetic 

Fields  

 Electromagnetics is the study of the effect of 

charges at rest and charges in motion. 

 Some special cases of electromagnetics: 

 Electrostatics:  charges at rest 

 Magnetostatics: charges in steady motion (DC) 

 Electromagnetic waves: waves excited by charges 

in time-varying motion 
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Introduction to Electromagnetic 

Fields 

• transmitter and receiver 

are connected by a “field.” 
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Introduction to Electromagnetic 

Fields 

1 

2 3 

4 

• consider an interconnect between points “1” and “2”  

High-speed, high-density digital circuits: 
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Introduction to Electromagnetic 

Fields 
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Introduction to Electromagnetic 

Fields 

 When an event in one place has an effect 

on something at a different location, we 

talk about the events as being connected by 

a “field”. 

 A field is a spatial distribution of a 

quantity; in general, it can be either scalar 

or vector in nature. 
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Introduction to Electromagnetic 

Fields 

 Electric and magnetic fields: 

Are vector fields with three spatial 

components. 

Vary as a function of position in 3D space as 

well as time. 

Are governed by partial differential equations 

derived from Maxwell’s equations. 
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Introduction to Electromagnetic 

Fields 

 A scalar is a quantity having only an amplitude 

(and possibly phase). 

 

 

 A vector is a quantity having direction in 

addition to amplitude (and possibly phase). 

 

 

 

Examples: voltage, current, charge, energy, temperature 

Examples: velocity, acceleration, force 
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Introduction to Electromagnetic 

Fields 

 Fundamental vector field quantities in 

electromagnetics: 

 Electric field intensity 

 

 Electric flux density (electric displacement) 

 

 Magnetic field intensity 

 

 Magnetic flux density 

units = volts per meter (V/m = kg m/A/s3) 

units = coulombs per square meter (C/m2 = A s /m2) 

units = amps per meter (A/m) 

units = teslas = webers per square meter (T = 

Wb/ m2 = kg/A/s3) 

 E

 D

 H

 B
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Introduction to Electromagnetic 

Fields 

 Universal constants in electromagnetics: 
 Velocity of an electromagnetic wave (e.g., light) 

in free space (perfect vacuum) 

 
 Permeability of free space 

 
 Permittivity of free space: 

 
 Intrinsic impedance of free space: 

m/s 103 8c

H/m 104 7

0

 

F/m 10854.8 12

0



  1200
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Introduction to Electromagnetic 

Fields 

0

0
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HB 0

ED 0

 Relationships involving the universal 

constants: 
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Introduction to Electromagnetic 

Fields 

sources 

Ji, Ki 

Obtained 

• by assumption 

• from solution to IE 

fields 
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Maxwell’s Equations 

 Maxwell’s equations in integral form are the 
fundamental postulates of classical electromagnetics - 
all classical electromagnetic phenomena are explained 
by these equations. 

 Electromagnetic phenomena include electrostatics, 
magnetostatics, electromagnetostatics and 
electromagnetic wave propagation. 

 The differential equations and boundary conditions that 
we use to formulate and solve EM problems are all 
derived from Maxwell’s equations in integral form. 
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Maxwell’s Equations 

 Various equivalence principles consistent 
with Maxwell’s equations allow us to 
replace more complicated electric current 
and charge distributions with equivalent 
magnetic sources. 

 These equivalent magnetic sources can be 
treated by a generalization of Maxwell’s 
equations. 
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Maxwell’s Equations in Integral Form (Generalized to 

Include Equivalent Magnetic Sources)  
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Adding the fictitious magnetic source 

terms is equivalent to living in a universe 

where magnetic monopoles (charges) 

exist. 
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Continuity Equation in Integral Form (Generalized 

to Include Equivalent Magnetic Sources)  


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• The continuity 

equations are 

implicit in 

Maxwell’s 

equations. 
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Contour, Surface and Volume 

Conventions 

C S 

dS 

• open surface S bounded by 

  closed contour C 

• dS in direction given by 

   RH rule 

V 

S 

dS 

• volume V bounded by 

  closed surface S 

• dS in direction outward 

   from V 
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Electric Current and Charge 

Densities 

 Jc = (electric) conduction current density 

(A/m2) 

 Ji = (electric) impressed current density 

(A/m2) 

 qev = (electric) charge density (C/m3) 
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Magnetic Current and Charge 

Densities 

 Kc = magnetic conduction current density 

(V/m2) 

 Ki = magnetic impressed current density 

(V/m2) 

 qmv = magnetic charge density (Wb/m3) 
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Maxwell’s Equations - Sources 

and Responses 

 Sources of EM field: 

Ki, Ji, qev, qmv 

 

 Responses to EM field: 

E, H, D, B, Jc, Kc 
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Maxwell’s Equations in Differential Form (Generalized to 

Include Equivalent Magnetic Sources)  

mv

ev

ic

ic

qB

qD

JJ
t

D
H

KK
t

B
E



















Lecture 2 
24 

Continuity Equation in Differential Form (Generalized to 

Include Equivalent Magnetic Sources)  
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equations. 
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Electromagnetic Boundary 

Conditions 

Region 2 

Region 1 
n̂
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Electromagnetic Boundary 

Conditions 
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Surface Current and Charge 

Densities 

 Can be either sources of or responses to 

EM field. 

 Units: 

Ks - V/m 

 Js - A/m 

 qes - C/m2 

 qms - W/m2 
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Electromagnetic Fields in 

Materials 
 In time-varying electromagnetics, we consider E and 

H to be the “primary” responses, and attempt to 

write the “secondary” responses D, B, Jc, and Kc in 

terms of E and H. 

 The relationships between the “primary” and 

“secondary” responses depends on the medium in 

which the field exists. 

 The relationships between the “primary” and 

“secondary” responses are called constitutive 

relationships. 
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Electromagnetic Fields in 

Materials 

 Most general constitutive relationships: 
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Electromagnetic Fields in 

Materials 

 In free space, we have: 
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Electromagnetic Fields in 

Materials 
 In a simple medium, we have: 

HK

EJ

HB

ED

mc

c















 • linear (independent of field 

strength) 

• isotropic (independent of position 

within the medium) 

• homogeneous (independent of 

direction) 

• time-invariant (independent of 

time) 

• non-dispersive (independent of 

frequency) 
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Electromagnetic Fields in Materials 

   = permittivity = r0 (F/m) 

   = permeability = r0 (H/m) 

   = electric conductivity = r0 (S/m) 

  m = magnetic conductivity = r0 (/m) 
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Phasor Representation of a Time-

Harmonic Field 

 A phasor is a complex number 

representing the amplitude and phase of a 

sinusoid of known frequency. 

 

   jAetA cos

time domain frequency domain 

phasor 
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Phasor Representation of a Time-

Harmonic Field 
 Phasors are an extremely important concept in the 

study of classical electromagnetics, circuit theory, and 
communications systems. 

 Maxwell’s equations in simple media, circuits 
comprising linear devices, and many components of 
communications systems can all be represented as 
linear time-invariant (LTI) systems.  (Formal 
definition of these later in the course …) 

 The eigenfunctions of any LTI system are the complex 
exponentials of the form: 

 tje 
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Phasor Representation of a Time-

Harmonic Field 

 If the input to an LTI 
system is a sinusoid of 
frequency , then the 
output is also a sinusoid 
of frequency  (with 
different amplitude and 
phase). 

tje  LTI   tjejH 

A complex constant (for fixed ); 

as a function of   gives the 

frequency response of  the LTI 

system. 
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Phasor Representation of a Time-

Harmonic Field 

 The amplitude and phase of a sinusoidal 

function can also depend on position, and the 

sinusoid can also be a vector function: 

 

   )()(ˆ)(cos)(ˆ rj

AA erAartrAa  
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Phasor Representation of a Time-

Harmonic Field 

 Given the phasor (frequency-domain) 

representation of a time-harmonic vector field, 

the time-domain representation of the vector 

field is obtained using the recipe: 

 

     tjerEtrE Re, 
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Phasor Representation of a Time-

Harmonic Field 

 Phasors can be used provided all of the media 

in the problem are linear  no frequency 

conversion. 

 When phasors are used, integro-differential 

operators in time become algebraic operations in 

frequency, e.g.: 

 
 rEj

t

trE




 ,
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Time-Harmonic Maxwell’s 

Equations 
 If the sources are time-harmonic (sinusoidal), and all 

media are linear, then the electromagnetic fields are 

sinusoids of the same frequency as the sources. 

 In this case, we can simplify matters by using 

Maxwell’s equations in the frequency-domain. 

 Maxwell’s equations in the frequency-domain are 

relationships between the phasor representations of 

the fields. 
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Maxwell’s Equations in Differential 

Form for Time-Harmonic Fields 
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Maxwell’s Equations in Differential Form for 

Time-Harmonic Fields in Simple Medium 
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Electrostatics as a Special Case of 

Electromagnetics 
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Electrostatics 

 Electrostatics is the branch of 

electromagnetics dealing with the effects 

of electric charges at rest. 

 The fundamental law of electrostatics is 

Coulomb’s law. 
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Electric Charge 

 Electrical phenomena caused by friction are part 

of our everyday lives, and can be understood in 

terms of electrical charge. 

 The effects of electrical charge can be 

observed in the attraction/repulsion of various 

objects when “charged.”  

 Charge comes in two varieties called “positive” 

and “negative.” 
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Electric Charge 

 Objects carrying a net positive charge attract 

those carrying a net negative charge and repel 

those carrying a net positive charge. 

 Objects carrying a net negative charge attract 

those carrying a net positive charge and repel 

those carrying a net negative charge. 

 On an atomic scale, electrons are negatively 

charged and nuclei are positively charged. 
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Electric Charge 

 Electric charge is inherently quantized such that 

the charge on any object is an integer multiple of 

the smallest unit of charge which is the 

magnitude of the electron charge                       

e = 1.602  10-19 C. 

 On the macroscopic level, we can assume that 

charge is “continuous.” 
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Coulomb’s Law 

 Coulomb’s law is the “law of action” between 

charged bodies. 

 Coulomb’s law gives the electric force between 

two point charges in an otherwise empty 

universe. 

 A point charge is a charge that occupies a 

region of space which is negligibly small 

compared to the distance between the point 

charge and any other object.   
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Coulomb’s Law 

2
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Coulomb’s Law 

 The force on Q1 due to Q2 is equal in 

magnitude but opposite in direction to the 

force on Q2 due to Q1. 

1221 FF 
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Electric Field 

 Consider a point charge 
Q placed at the origin of a 
coordinate system in an 
otherwise empty universe. 

 A test charge Qt brought 
near Q experiences a 
force: 

2

04
ˆ

r

QQ
aF t

rQt 


Q 

Qt 

r
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Electric Field 

 The existence of the force on Qt can be 

attributed to an electric field produced by Q. 

 The electric field produced by Q at a point in 

space can be defined as the force per unit charge 

acting on a test charge Qt placed at that point. 

t

Q

Q Q

F
E t

t 0
lim



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Electric Field 

 The electric field describes the effect of a 

stationary charge on other charges and is 

an abstract “action-at-a-distance” concept, 

very similar to the concept of a gravity 

field. 

 The basic units of electric field are newtons 

per coulomb. 

 In practice, we usually use volts per meter. 
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Electric Field 

 For a point charge at the origin, the electric 

field at any point is given by 

 
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Electric Field 

 For a point charge located at a point P’ 

described by a position vector 

   the electric field at P is given by  

 
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Electric Field 

 In electromagnetics, it is very popular to 

describe the source in terms of primed 

coordinates, and the observation point in 

terms of unprimed coordinates. 

 As we shall see, for continuous source 

distributions we shall need to integrate 

over the source coordinates. 
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Electric Field 

 Using the principal of superposition, the 

electric field at a point arising from 

multiple point charges may be evaluated as  

  



n

k k

kk
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RQ
rE

1
3
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Continuous Distributions of 

Charge 

 Charge can occur as 

 point charges (C) 

 volume charges (C/m3) 

 surface charges (C/m2) 

 line charges (C/m) 

 most general 



Lecture 2 
58 

Continuous Distributions of 

Charge 

 Volume charge density 

 
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Continuous Distributions of 

Charge 

 Electric field due to volume charge 

density 
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Electric Field Due to Volume 

Charge Density 

 
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Continuous Distributions of 

Charge 

 Surface charge density 

 
S

Q
rq encl

S
es




 0
lim

Qencl 

r S’ 



Lecture 2 
62 

Continuous Distributions of 

Charge 

 Electric field due to surface charge 

density 
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Electric Field Due to Surface 

Charge Density 

 
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Continuous Distributions of 

Charge 
 Line charge density 
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Continuous Distributions of 

Charge 
 Electric field due to line charge density 

 

Qencl r L’ r
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Electric Field Due to Line Charge 

Density 

 
 
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Electrostatic Potential 

 An electric field is a force field. 

 If a body being acted on by a force is 
moved from one point to another, then 
work is done. 

 The concept of scalar electric potential 
provides a measure of the work done in 
moving charged bodies in an 
electrostatic field. 
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Electrostatic Potential 

 The work done in moving a test charge from 

one point to another in a region of electric 

field: 

 
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Electrostatic Potential 

 In evaluating line integrals, it is customary to take 

the dl in the direction of increasing coordinate value 

so that the manner in which the path of integration 

is traversed is unambiguously determined by the 

limits of integration. 

 
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Electrostatic Potential 

 The electrostatic field is conservative: 

The value of the line integral depends only 

on the end points and is independent of 

the path taken. 

The value of the line integral around any 

closed path is zero. 

0
C

ldE
C 
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Electrostatic Potential 

 The work done per unit charge in moving a 

test charge from point a to point b is the 

electrostatic potential difference between 

the two points: 

  

b

a

ba
ab ldE

q

W
V

electrostatic potential difference 

Units are volts. 
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Electrostatic Potential 

 Since the electrostatic field is 

conservative we can write 

   aVbV
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Electrostatic Potential 

 Thus the electrostatic potential V is a 

scalar field that is defined at every point in 

space. 

 In particular the value of the electrostatic 

potential at any point P is given by 

   

P

P

ldErV

0 reference point 
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Electrostatic Potential 

 The reference point (P0) is where the potential 

is zero (analogous to ground in a circuit). 

 Often the reference is taken to be at infinity so 

that the potential of a point in space is defined 

as 

  




P

ldErV
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Electrostatic Potential and 

Electric Field 

 The work done in moving a point charge 

from point a to point b can be written as  

    

 



b

a

abba

ldEQ

aVbVQVQW
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Electrostatic Potential and 

Electric Field 

 Along a short path of length l we have 

lEV

lEQVQW





or



Lecture 2 
77 

Electrostatic Potential and 

Electric Field 

 Along an incremental path of length dl we 

have 

 

 Recall from the definition of directional 

derivative: 

ldEdV 

ldVdV 
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Electrostatic Potential and 

Electric Field 

 Thus: 

VE 

the “del” or “nabla” operator 


